aboutsummaryrefslogblamecommitdiffstats
path: root/testing/peervpn/openssl-1.1.patch
blob: 2cf3ae0edf47c6e7ff2c2dac62055023584a61cc (plain) (tree)























































































































































































































































































                                                                                                                                                                                                                
From: Elias Werberich <elias@werberich.de>
Date: Thu, 16 Mar 2017 11:00:22 +0100
Subject: [PATCH] src: Add support for OpenSSL 1.1.0 and higher

With OpenSSL 1.1.0 and higher API changes were introduced so some
structures have become opaque which makes direct access impossible. In
order to support builds with newer OpenSSL versions, PeerVPN has to be
patched to access needed data of these structures indirectly.

More information can be found at https://www.openssl.org/news/cl110.txt

Signed-off-by: Elias Werberich <elias@werberich.de>
---
 src/libp2psec/crypto.c | 87 +++++++++++++++++++++++++++++++++++++++++++++++++-
 src/libp2psec/dh.c     | 16 ++++++++++
 2 files changed, 102 insertions(+), 1 deletion(-)

diff --git a/libp2psec/crypto.c b/libp2psec/crypto.c
index d499963..802f8aa 100644
--- a/libp2psec/crypto.c
+++ b/libp2psec/crypto.c
@@ -47,9 +47,15 @@
 
 // cipher context storage
 struct s_crypto {
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 	EVP_CIPHER_CTX enc_ctx;
 	EVP_CIPHER_CTX dec_ctx;
 	HMAC_CTX hmac_ctx;
+#else
+	EVP_CIPHER_CTX *enc_ctx;
+	EVP_CIPHER_CTX *dec_ctx;
+	HMAC_CTX *hmac_ctx;
+#endif
 };
 
 
@@ -169,44 +175,77 @@ static int cryptoSetKeys(struct s_crypto *ctxs, const int count, const unsigned
 	const EVP_MD *out_md = EVP_sha256();
 	const EVP_CIPHER *out_cipher = EVP_aes_256_cbc();
 	const int key_size = EVP_CIPHER_key_length(out_cipher);
-	HMAC_CTX hmac_ctx;
 	int16_t i;
 	unsigned char in[2];
 	int j,k;
 
 	// setup hmac as the pseudorandom function
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
+	HMAC_CTX hmac_ctx;
 	HMAC_CTX_init(&hmac_ctx);
+#else
+	HMAC_CTX *hmac_ctx = HMAC_CTX_new();
+#endif
 	
 	// calculate seed key
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 	HMAC_Init_ex(&hmac_ctx, nonce_buf, nonce_len, keygen_md, NULL);
 	HMAC_Update(&hmac_ctx, secret_buf, secret_len);
 	HMAC_Final(&hmac_ctx, seed_key, (unsigned int *)&seed_key_len);
+#else
+	HMAC_Init_ex(hmac_ctx, nonce_buf, nonce_len, keygen_md, NULL);
+	HMAC_Update(hmac_ctx, secret_buf, secret_len);
+	HMAC_Final(hmac_ctx, seed_key, (unsigned int *)&seed_key_len);
+#endif
 	
 	// calculate derived keys
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 	HMAC_Init_ex(&hmac_ctx, seed_key, seed_key_len, keygen_md, NULL);
 	HMAC_Update(&hmac_ctx, nonce_buf, nonce_len);
 	HMAC_Final(&hmac_ctx, cur_key, (unsigned int *)&cur_key_len);
+#else
+	HMAC_Init_ex(hmac_ctx, seed_key, seed_key_len, keygen_md, NULL);
+	HMAC_Update(hmac_ctx, nonce_buf, nonce_len);
+	HMAC_Final(hmac_ctx, cur_key, (unsigned int *)&cur_key_len);
+#endif
 	i = 0;
 	j = 0;
 	k = 0;
 	while(k < count) {
 		// calculate next key
 		utilWriteInt16(in, i);
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 		HMAC_Init_ex(&hmac_ctx, NULL, -1, NULL, NULL);
 		HMAC_Update(&hmac_ctx, cur_key, cur_key_len);
 		HMAC_Update(&hmac_ctx, nonce_buf, nonce_len);
 		HMAC_Update(&hmac_ctx, in, 2);
 		HMAC_Final(&hmac_ctx, cur_key, (unsigned int *)&cur_key_len);
+#else
+		HMAC_Init_ex(hmac_ctx, NULL, -1, NULL, NULL);
+		HMAC_Update(hmac_ctx, cur_key, cur_key_len);
+		HMAC_Update(hmac_ctx, nonce_buf, nonce_len);
+		HMAC_Update(hmac_ctx, in, 2);
+		HMAC_Final(hmac_ctx, cur_key, (unsigned int *)&cur_key_len);
+#endif
 		if(cur_key_len < key_size) return 0; // check if key is long enough
 		switch(j) {
 			case 1:
 				// save this key as the decryption and encryption key
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 				if(!EVP_EncryptInit_ex(&ctxs[k].enc_ctx, out_cipher, NULL, cur_key, NULL)) return 0;
 				if(!EVP_DecryptInit_ex(&ctxs[k].dec_ctx, out_cipher, NULL, cur_key, NULL)) return 0;
+#else
+				if(!EVP_EncryptInit_ex(ctxs[k].enc_ctx, out_cipher, NULL, cur_key, NULL)) return 0;
+				if(!EVP_DecryptInit_ex(ctxs[k].dec_ctx, out_cipher, NULL, cur_key, NULL)) return 0;
+#endif
 				break;
 			case 2:
 				// save this key as the hmac key
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 				HMAC_Init_ex(&ctxs[k].hmac_ctx, cur_key, cur_key_len, out_md, NULL);
+#else
+				HMAC_Init_ex(ctxs[k].hmac_ctx, cur_key, cur_key_len, out_md, NULL);
+#endif
 				break;
 			default:
 				// throw this key away
@@ -221,7 +260,11 @@ static int cryptoSetKeys(struct s_crypto *ctxs, const int count, const unsigned
 	}
 	
 	// clean up
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 	HMAC_CTX_cleanup(&hmac_ctx);
+#else
+	HMAC_CTX_free(hmac_ctx);
+#endif
 	return 1;
 }
 
@@ -241,9 +284,15 @@ static void cryptoDestroy(struct s_crypto *ctxs, const int count) {
 	int i;
 	cryptoSetKeysRandom(ctxs, count);
 	for(i=0; i<count; i++) {
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 		HMAC_CTX_cleanup(&ctxs[i].hmac_ctx);
 		EVP_CIPHER_CTX_cleanup(&ctxs[i].dec_ctx);
 		EVP_CIPHER_CTX_cleanup(&ctxs[i].enc_ctx);
+#else
+		HMAC_CTX_free(ctxs[i].hmac_ctx);
+		EVP_CIPHER_CTX_free(ctxs[i].dec_ctx);
+		EVP_CIPHER_CTX_free(ctxs[i].enc_ctx);
+#endif
 	}
 }
 
@@ -252,9 +301,15 @@ static void cryptoDestroy(struct s_crypto *ctxs, const int count) {
 static int cryptoCreate(struct s_crypto *ctxs, const int count) {
 	int i;
 	for(i=0; i<count; i++) {
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 		EVP_CIPHER_CTX_init(&ctxs[i].enc_ctx);
 		EVP_CIPHER_CTX_init(&ctxs[i].dec_ctx);
 		HMAC_CTX_init(&ctxs[i].hmac_ctx);
+#else
+		ctxs[i].enc_ctx = EVP_CIPHER_CTX_new();
+		ctxs[i].dec_ctx = EVP_CIPHER_CTX_new();
+		ctxs[i].hmac_ctx = HMAC_CTX_new();
+#endif
 	}
 	if(cryptoSetKeysRandom(ctxs, count)) {
 		return 1;
@@ -270,9 +325,15 @@ static int cryptoCreate(struct s_crypto *ctxs, const int count) {
 static int cryptoHMAC(struct s_crypto *ctx, unsigned char *hmac_buf, const int hmac_len, const unsigned char *in_buf, const int in_len) {
 	unsigned char hmac[EVP_MAX_MD_SIZE];
 	int len;
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 	HMAC_Init_ex(&ctx->hmac_ctx, NULL, -1, NULL, NULL);
 	HMAC_Update(&ctx->hmac_ctx, in_buf, in_len);
 	HMAC_Final(&ctx->hmac_ctx, hmac, (unsigned int *)&len);
+#else
+	HMAC_Init_ex(ctx->hmac_ctx, NULL, -1, NULL, NULL);
+	HMAC_Update(ctx->hmac_ctx, in_buf, in_len);
+	HMAC_Final(ctx->hmac_ctx, hmac, (unsigned int *)&len);
+#endif
 	if(len < hmac_len) return 0;
 	memcpy(hmac_buf, hmac, hmac_len);
 	return 1;
@@ -302,9 +363,15 @@ static int cryptoSetSessionKeys(struct s_crypto *session_ctx, struct s_crypto *c
 	if(!cryptoHMAC(md_keygen_ctx, hmac_key, key_size, nonce, nonce_len)) return 0;
 
 	// set the keys
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 	if(!EVP_EncryptInit_ex(&session_ctx->enc_ctx, st_cipher.cipher, NULL, cipher_key, NULL)) return 0;
 	if(!EVP_DecryptInit_ex(&session_ctx->dec_ctx, st_cipher.cipher, NULL, cipher_key, NULL)) return 0;
 	HMAC_Init_ex(&session_ctx->hmac_ctx, hmac_key, key_size, st_md.md, NULL);
+#else
+	if(!EVP_EncryptInit_ex(session_ctx->enc_ctx, st_cipher.cipher, NULL, cipher_key, NULL)) return 0;
+	if(!EVP_DecryptInit_ex(session_ctx->dec_ctx, st_cipher.cipher, NULL, cipher_key, NULL)) return 0;
+	HMAC_Init_ex(session_ctx->hmac_ctx, hmac_key, key_size, st_md.md, NULL);
+#endif
 
 	return 1;
 }
@@ -326,10 +393,19 @@ static int cryptoEnc(struct s_crypto *ctx, unsigned char *enc_buf, const int enc
 	cryptoRand(iv, iv_len);
 	memcpy(&enc_buf[hmac_len], iv, iv_len);
 
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 	if(!EVP_EncryptInit_ex(&ctx->enc_ctx, NULL, NULL, NULL, iv)) { return 0; }
 	if(!EVP_EncryptUpdate(&ctx->enc_ctx, &enc_buf[(hdr_len)], &len, dec_buf, dec_len)) { return 0; }
+#else
+	if(!EVP_EncryptInit_ex(ctx->enc_ctx, NULL, NULL, NULL, iv)) { return 0; }
+	if(!EVP_EncryptUpdate(ctx->enc_ctx, &enc_buf[(hdr_len)], &len, dec_buf, dec_len)) { return 0; }
+#endif
 	cr_len = len;
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 	if(!EVP_EncryptFinal(&ctx->enc_ctx, &enc_buf[(hdr_len + cr_len)], &len)) { return 0; }
+#else
+	if(!EVP_EncryptFinal(ctx->enc_ctx, &enc_buf[(hdr_len + cr_len)], &len)) { return 0; }
+#endif
 	cr_len += len;
 
 	if(!cryptoHMAC(ctx, hmac, hmac_len, &enc_buf[hmac_len], (iv_len + cr_len))) { return 0; }
@@ -357,10 +433,19 @@ static int cryptoDec(struct s_crypto *ctx, unsigned char *dec_buf, const int dec
 	memset(iv, 0, crypto_MAXIVSIZE);
 	memcpy(iv, &enc_buf[hmac_len], iv_len);
 
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 	if(!EVP_DecryptInit_ex(&ctx->dec_ctx, NULL, NULL, NULL, iv)) { return 0; }
 	if(!EVP_DecryptUpdate(&ctx->dec_ctx, dec_buf, &len, &enc_buf[hdr_len], (enc_len - hdr_len))) { return 0; }
+#else
+	if(!EVP_DecryptInit_ex(ctx->dec_ctx, NULL, NULL, NULL, iv)) { return 0; }
+	if(!EVP_DecryptUpdate(ctx->dec_ctx, dec_buf, &len, &enc_buf[hdr_len], (enc_len - hdr_len))) { return 0; }
+#endif
 	cr_len = len;
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 	if(!EVP_DecryptFinal(&ctx->dec_ctx, &dec_buf[cr_len], &len)) { return 0; }
+#else
+	if(!EVP_DecryptFinal(ctx->dec_ctx, &dec_buf[cr_len], &len)) { return 0; }
+#endif
 	cr_len += len;
 	
 	return cr_len;
diff --git a/libp2psec/dh.c b/libp2psec/dh.c
index d66f1b9..b77b680 100644
--- a/libp2psec/dh.c
+++ b/libp2psec/dh.c
@@ -81,10 +81,18 @@ CXzWzPkElg5L22pMUCPfYxo10HKoUHmSYwIBAg==\n\
 
 // Generate a key.
 static int dhGenKey(struct s_dh_state *dhstate) {
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 	BIGNUM *bn;
+#else
+	const BIGNUM *bn;
+#endif
 	int bn_size;
 	if(DH_generate_key(dhstate->dh)) {
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 		bn = dhstate->dh->pub_key;
+#else
+		DH_get0_key(dhstate->dh, &bn, NULL);
+#endif
 		bn_size = BN_num_bytes(bn);
 		if((bn_size > dh_MINSIZE) && (bn_size < dh_MAXSIZE)) {
 			BN_bn2bin(bn, dhstate->pubkey);
@@ -152,13 +160,21 @@ static int dhGetPubkey(unsigned char *buf, const int buf_size, const struct s_dh
 // Generate symmetric keys. Returns 1 if succesful.
 static int dhGenCryptoKeys(struct s_crypto *ctx, const int ctx_count, const struct s_dh_state *dhstate, const unsigned char *peerkey, const int peerkey_len, const unsigned char *nonce, const int nonce_len) {
 	BIGNUM *bn = dhstate->bn;
+#if OPENSSL_VERSION_NUMBER >= 0x10100000L
+	const BIGNUM *bndh;
+#endif
 	DH *dh = dhstate->dh;
 	int ret = 0;
 	int maxsize = DH_size(dh);
 	unsigned char secret[maxsize];
 	int size;
 	BN_bin2bn(peerkey, peerkey_len, bn);
+#if OPENSSL_VERSION_NUMBER < 0x10100000L
 	if(BN_ucmp(bn, dh->pub_key) != 0) {
+#else
+	DH_get0_key(dh, &bndh, NULL);
+	if(BN_ucmp(bn, bndh) != 0) {
+#endif
 		size = DH_compute_key(secret, bn, dh);
 		if(size > 0) {
 			ret = cryptoSetKeys(ctx, ctx_count, secret, size, nonce, nonce_len);
-- 
2.12.2