aboutsummaryrefslogtreecommitdiffstats
path: root/main/qemu/kqemu.c
blob: 035d310ab91358daad210e729c902bc8a0c2cada (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
/*
 *  KQEMU support
 *
 *  Copyright (c) 2005-2008 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
 */
#include "config.h"
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <winioctl.h>
#else
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#endif
#ifdef HOST_SOLARIS
#include <sys/ioccom.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <inttypes.h>

#include "cpu.h"
#include "exec-all.h"
#include "qemu-common.h"

#ifdef USE_KQEMU

#define DEBUG
//#define PROFILE


#ifdef DEBUG
#  define LOG_INT(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
#  define LOG_INT_STATE(env) log_cpu_state_mask(CPU_LOG_INT, (env), 0)
#else
#  define LOG_INT(...) do { } while (0)
#  define LOG_INT_STATE(env) do { } while (0)
#endif

#include <unistd.h>
#include <fcntl.h>
#include "kqemu.h"

#ifdef _WIN32
#define KQEMU_DEVICE "\\\\.\\kqemu"
#else
#define KQEMU_DEVICE "/dev/kqemu"
#endif

static void qpi_init(void);

#ifdef _WIN32
#define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
HANDLE kqemu_fd = KQEMU_INVALID_FD;
#define kqemu_closefd(x) CloseHandle(x)
#else
#define KQEMU_INVALID_FD -1
int kqemu_fd = KQEMU_INVALID_FD;
#define kqemu_closefd(x) close(x)
#endif

/* 0 = not allowed
   1 = user kqemu
   2 = kernel kqemu
*/
int kqemu_allowed = 1;
uint64_t *pages_to_flush;
unsigned int nb_pages_to_flush;
uint64_t *ram_pages_to_update;
unsigned int nb_ram_pages_to_update;
uint64_t *modified_ram_pages;
unsigned int nb_modified_ram_pages;
uint8_t *modified_ram_pages_table;
int qpi_io_memory;
uint32_t kqemu_comm_base; /* physical address of the QPI communication page */

#define cpuid(index, eax, ecx, edx) \
  asm volatile ("cpuid" \
                : "=a" (eax), "=c" (ecx), "=d" (edx) \
                : "0" (index))

#ifdef __x86_64__
static int is_cpuid_supported(void)
{
    return 1;
}
#else
static int is_cpuid_supported(void)
{
    int v0, v1;
    asm volatile ("pushf\n"
                  "popl %0\n"
                  "movl %0, %1\n"
                  "xorl $0x00200000, %0\n"
                  "pushl %0\n"
                  "popf\n"
                  "pushf\n"
                  "popl %0\n"
                  : "=a" (v0), "=d" (v1)
                  :
                  : "cc");
    return (v0 != v1);
}
#endif

static void kqemu_update_cpuid(CPUState *env)
{
    int critical_features_mask, features, ext_features, ext_features_mask;
    uint32_t eax, ecx, edx;

    /* the following features are kept identical on the host and
       target cpus because they are important for user code. Strictly
       speaking, only SSE really matters because the OS must support
       it if the user code uses it. */
    critical_features_mask =
        CPUID_CMOV | CPUID_CX8 |
        CPUID_FXSR | CPUID_MMX | CPUID_SSE |
        CPUID_SSE2 | CPUID_SEP;
    ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR;
    if (!is_cpuid_supported()) {
        features = 0;
        ext_features = 0;
    } else {
        cpuid(1, eax, ecx, edx);
        features = edx;
        ext_features = ecx;
    }
#ifdef __x86_64__
    /* NOTE: on x86_64 CPUs, SYSENTER is not supported in
       compatibility mode, so in order to have the best performances
       it is better not to use it */
    features &= ~CPUID_SEP;
#endif
    env->cpuid_features = (env->cpuid_features & ~critical_features_mask) |
        (features & critical_features_mask);
    env->cpuid_ext_features = (env->cpuid_ext_features & ~ext_features_mask) |
        (ext_features & ext_features_mask);
    /* XXX: we could update more of the target CPUID state so that the
       non accelerated code sees exactly the same CPU features as the
       accelerated code */
}

int kqemu_init(CPUState *env)
{
    struct kqemu_init kinit;
    int ret, version;
#ifdef _WIN32
    DWORD temp;
#endif

    if (!kqemu_allowed)
        return -1;

#ifdef _WIN32
    kqemu_fd = CreateFile(KQEMU_DEVICE, GENERIC_WRITE | GENERIC_READ,
                          FILE_SHARE_READ | FILE_SHARE_WRITE,
                          NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
                          NULL);
    if (kqemu_fd == KQEMU_INVALID_FD) {
        fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %lu\n",
                KQEMU_DEVICE, GetLastError());
        return -1;
    }
#else
    kqemu_fd = open(KQEMU_DEVICE, O_RDWR);
    if (kqemu_fd == KQEMU_INVALID_FD) {
        fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %s\n",
                KQEMU_DEVICE, strerror(errno));
        return -1;
    }
#endif
    version = 0;
#ifdef _WIN32
    DeviceIoControl(kqemu_fd, KQEMU_GET_VERSION, NULL, 0,
                    &version, sizeof(version), &temp, NULL);
#else
    ioctl(kqemu_fd, KQEMU_GET_VERSION, &version);
#endif
    if (version != KQEMU_VERSION) {
        fprintf(stderr, "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use\n",
                version, KQEMU_VERSION);
        goto fail;
    }

    pages_to_flush = qemu_vmalloc(KQEMU_MAX_PAGES_TO_FLUSH *
                                  sizeof(uint64_t));
    if (!pages_to_flush)
        goto fail;

    ram_pages_to_update = qemu_vmalloc(KQEMU_MAX_RAM_PAGES_TO_UPDATE *
                                       sizeof(uint64_t));
    if (!ram_pages_to_update)
        goto fail;

    modified_ram_pages = qemu_vmalloc(KQEMU_MAX_MODIFIED_RAM_PAGES *
                                      sizeof(uint64_t));
    if (!modified_ram_pages)
        goto fail;
    modified_ram_pages_table = qemu_mallocz(phys_ram_size >> TARGET_PAGE_BITS);
    if (!modified_ram_pages_table)
        goto fail;

    memset(&kinit, 0, sizeof(kinit)); /* set the paddings to zero */
    kinit.ram_base = phys_ram_base;
    kinit.ram_size = phys_ram_size;
    kinit.ram_dirty = phys_ram_dirty;
    kinit.pages_to_flush = pages_to_flush;
    kinit.ram_pages_to_update = ram_pages_to_update;
    kinit.modified_ram_pages = modified_ram_pages;
#ifdef _WIN32
    ret = DeviceIoControl(kqemu_fd, KQEMU_INIT, &kinit, sizeof(kinit),
                          NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
#else
    ret = ioctl(kqemu_fd, KQEMU_INIT, &kinit);
#endif
    if (ret < 0) {
        fprintf(stderr, "Error %d while initializing QEMU acceleration layer - disabling it for now\n", ret);
    fail:
        kqemu_closefd(kqemu_fd);
        kqemu_fd = KQEMU_INVALID_FD;
        return -1;
    }
    kqemu_update_cpuid(env);
    env->kqemu_enabled = kqemu_allowed;
    nb_pages_to_flush = 0;
    nb_ram_pages_to_update = 0;

    qpi_init();
    return 0;
}

void kqemu_flush_page(CPUState *env, target_ulong addr)
{
    LOG_INT("kqemu_flush_page: addr=" TARGET_FMT_lx "\n", addr);
    if (nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH)
        nb_pages_to_flush = KQEMU_FLUSH_ALL;
    else
        pages_to_flush[nb_pages_to_flush++] = addr;
}

void kqemu_flush(CPUState *env, int global)
{
    LOG_INT("kqemu_flush:\n");
    nb_pages_to_flush = KQEMU_FLUSH_ALL;
}

void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr)
{
    LOG_INT("kqemu_set_notdirty: addr=%08lx\n", 
                (unsigned long)ram_addr);
    /* we only track transitions to dirty state */
    if (phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] != 0xff)
        return;
    if (nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE)
        nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL;
    else
        ram_pages_to_update[nb_ram_pages_to_update++] = ram_addr;
}

static void kqemu_reset_modified_ram_pages(void)
{
    int i;
    unsigned long page_index;

    for(i = 0; i < nb_modified_ram_pages; i++) {
        page_index = modified_ram_pages[i] >> TARGET_PAGE_BITS;
        modified_ram_pages_table[page_index] = 0;
    }
    nb_modified_ram_pages = 0;
}

void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr)
{
    unsigned long page_index;
    int ret;
#ifdef _WIN32
    DWORD temp;
#endif

    page_index = ram_addr >> TARGET_PAGE_BITS;
    if (!modified_ram_pages_table[page_index]) {
#if 0
        printf("%d: modify_page=%08lx\n", nb_modified_ram_pages, ram_addr);
#endif
        modified_ram_pages_table[page_index] = 1;
        modified_ram_pages[nb_modified_ram_pages++] = ram_addr;
        if (nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES) {
            /* flush */
#ifdef _WIN32
            ret = DeviceIoControl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
                                  &nb_modified_ram_pages,
                                  sizeof(nb_modified_ram_pages),
                                  NULL, 0, &temp, NULL);
#else
            ret = ioctl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
                        &nb_modified_ram_pages);
#endif
            kqemu_reset_modified_ram_pages();
        }
    }
}

void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size, 
                        ram_addr_t phys_offset)
{
    struct kqemu_phys_mem kphys_mem1, *kphys_mem = &kphys_mem1;
    uint64_t end;
    int ret, io_index;

    end = (start_addr + size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
    start_addr &= TARGET_PAGE_MASK;
    kphys_mem->phys_addr = start_addr;
    kphys_mem->size = end - start_addr;
    kphys_mem->ram_addr = phys_offset & TARGET_PAGE_MASK;
    io_index = phys_offset & ~TARGET_PAGE_MASK;
    switch(io_index) {
    case IO_MEM_RAM:
        kphys_mem->io_index = KQEMU_IO_MEM_RAM;
        break;
    case IO_MEM_ROM:
        kphys_mem->io_index = KQEMU_IO_MEM_ROM;
        break;
    default:
        if (qpi_io_memory == io_index) {
            kphys_mem->io_index = KQEMU_IO_MEM_COMM;
        } else {
            kphys_mem->io_index = KQEMU_IO_MEM_UNASSIGNED;
        }
        break;
    }
#ifdef _WIN32
    {
        DWORD temp;
        ret = DeviceIoControl(kqemu_fd, KQEMU_SET_PHYS_MEM, 
                              kphys_mem, sizeof(*kphys_mem),
                              NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
    }
#else
    ret = ioctl(kqemu_fd, KQEMU_SET_PHYS_MEM, kphys_mem);
#endif
    if (ret < 0) {
        fprintf(stderr, "kqemu: KQEMU_SET_PHYS_PAGE error=%d: start_addr=0x%016" PRIx64 " size=0x%08lx phys_offset=0x%08lx\n",
                ret, start_addr, 
                (unsigned long)size, (unsigned long)phys_offset);
    }
}

struct fpstate {
    uint16_t fpuc;
    uint16_t dummy1;
    uint16_t fpus;
    uint16_t dummy2;
    uint16_t fptag;
    uint16_t dummy3;

    uint32_t fpip;
    uint32_t fpcs;
    uint32_t fpoo;
    uint32_t fpos;
    uint8_t fpregs1[8 * 10];
};

struct fpxstate {
    uint16_t fpuc;
    uint16_t fpus;
    uint16_t fptag;
    uint16_t fop;
    uint32_t fpuip;
    uint16_t cs_sel;
    uint16_t dummy0;
    uint32_t fpudp;
    uint16_t ds_sel;
    uint16_t dummy1;
    uint32_t mxcsr;
    uint32_t mxcsr_mask;
    uint8_t fpregs1[8 * 16];
    uint8_t xmm_regs[16 * 16];
    uint8_t dummy2[96];
};

static struct fpxstate fpx1 __attribute__((aligned(16)));

static void restore_native_fp_frstor(CPUState *env)
{
    int fptag, i, j;
    struct fpstate fp1, *fp = &fp1;

    fp->fpuc = env->fpuc;
    fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
    fptag = 0;
    for (i=7; i>=0; i--) {
	fptag <<= 2;
	if (env->fptags[i]) {
            fptag |= 3;
        } else {
            /* the FPU automatically computes it */
        }
    }
    fp->fptag = fptag;
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&fp->fpregs1[i * 10], &env->fpregs[j].d, 10);
        j = (j + 1) & 7;
    }
    asm volatile ("frstor %0" : "=m" (*fp));
}

static void save_native_fp_fsave(CPUState *env)
{
    int fptag, i, j;
    uint16_t fpuc;
    struct fpstate fp1, *fp = &fp1;

    asm volatile ("fsave %0" : : "m" (*fp));
    env->fpuc = fp->fpuc;
    env->fpstt = (fp->fpus >> 11) & 7;
    env->fpus = fp->fpus & ~0x3800;
    fptag = fp->fptag;
    for(i = 0;i < 8; i++) {
        env->fptags[i] = ((fptag & 3) == 3);
        fptag >>= 2;
    }
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 10], 10);
        j = (j + 1) & 7;
    }
    /* we must restore the default rounding state */
    fpuc = 0x037f | (env->fpuc & (3 << 10));
    asm volatile("fldcw %0" : : "m" (fpuc));
}

static void restore_native_fp_fxrstor(CPUState *env)
{
    struct fpxstate *fp = &fpx1;
    int i, j, fptag;

    fp->fpuc = env->fpuc;
    fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
    fptag = 0;
    for(i = 0; i < 8; i++)
        fptag |= (env->fptags[i] << i);
    fp->fptag = fptag ^ 0xff;

    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&fp->fpregs1[i * 16], &env->fpregs[j].d, 10);
        j = (j + 1) & 7;
    }
    if (env->cpuid_features & CPUID_SSE) {
        fp->mxcsr = env->mxcsr;
        /* XXX: check if DAZ is not available */
        fp->mxcsr_mask = 0xffff;
        memcpy(fp->xmm_regs, env->xmm_regs, CPU_NB_REGS * 16);
    }
    asm volatile ("fxrstor %0" : "=m" (*fp));
}

static void save_native_fp_fxsave(CPUState *env)
{
    struct fpxstate *fp = &fpx1;
    int fptag, i, j;
    uint16_t fpuc;

    asm volatile ("fxsave %0" : : "m" (*fp));
    env->fpuc = fp->fpuc;
    env->fpstt = (fp->fpus >> 11) & 7;
    env->fpus = fp->fpus & ~0x3800;
    fptag = fp->fptag ^ 0xff;
    for(i = 0;i < 8; i++) {
        env->fptags[i] = (fptag >> i) & 1;
    }
    j = env->fpstt;
    for(i = 0;i < 8; i++) {
        memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 16], 10);
        j = (j + 1) & 7;
    }
    if (env->cpuid_features & CPUID_SSE) {
        env->mxcsr = fp->mxcsr;
        memcpy(env->xmm_regs, fp->xmm_regs, CPU_NB_REGS * 16);
    }

    /* we must restore the default rounding state */
    asm volatile ("fninit");
    fpuc = 0x037f | (env->fpuc & (3 << 10));
    asm volatile("fldcw %0" : : "m" (fpuc));
}

static int do_syscall(CPUState *env,
                      struct kqemu_cpu_state *kenv)
{
    int selector;

    selector = (env->star >> 32) & 0xffff;
#ifdef TARGET_X86_64
    if (env->hflags & HF_LMA_MASK) {
        int code64;

        env->regs[R_ECX] = kenv->next_eip;
        env->regs[11] = env->eflags;

        code64 = env->hflags & HF_CS64_MASK;

        cpu_x86_set_cpl(env, 0);
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_W_MASK | DESC_A_MASK);
        env->eflags &= ~env->fmask;
        if (code64)
            env->eip = env->lstar;
        else
            env->eip = env->cstar;
    } else
#endif
    {
        env->regs[R_ECX] = (uint32_t)kenv->next_eip;

        cpu_x86_set_cpl(env, 0);
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
                           0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_W_MASK | DESC_A_MASK);
        env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
        env->eip = (uint32_t)env->star;
    }
    return 2;
}

#ifdef CONFIG_PROFILER

#define PC_REC_SIZE 1
#define PC_REC_HASH_BITS 16
#define PC_REC_HASH_SIZE (1 << PC_REC_HASH_BITS)

typedef struct PCRecord {
    unsigned long pc;
    int64_t count;
    struct PCRecord *next;
} PCRecord;

static PCRecord *pc_rec_hash[PC_REC_HASH_SIZE];
static int nb_pc_records;

static void kqemu_record_pc(unsigned long pc)
{
    unsigned long h;
    PCRecord **pr, *r;

    h = pc / PC_REC_SIZE;
    h = h ^ (h >> PC_REC_HASH_BITS);
    h &= (PC_REC_HASH_SIZE - 1);
    pr = &pc_rec_hash[h];
    for(;;) {
        r = *pr;
        if (r == NULL)
            break;
        if (r->pc == pc) {
            r->count++;
            return;
        }
        pr = &r->next;
    }
    r = malloc(sizeof(PCRecord));
    r->count = 1;
    r->pc = pc;
    r->next = NULL;
    *pr = r;
    nb_pc_records++;
}

static int pc_rec_cmp(const void *p1, const void *p2)
{
    PCRecord *r1 = *(PCRecord **)p1;
    PCRecord *r2 = *(PCRecord **)p2;
    if (r1->count < r2->count)
        return 1;
    else if (r1->count == r2->count)
        return 0;
    else
        return -1;
}

static void kqemu_record_flush(void)
{
    PCRecord *r, *r_next;
    int h;

    for(h = 0; h < PC_REC_HASH_SIZE; h++) {
        for(r = pc_rec_hash[h]; r != NULL; r = r_next) {
            r_next = r->next;
            free(r);
        }
        pc_rec_hash[h] = NULL;
    }
    nb_pc_records = 0;
}

void kqemu_record_dump(void)
{
    PCRecord **pr, *r;
    int i, h;
    FILE *f;
    int64_t total, sum;

    pr = malloc(sizeof(PCRecord *) * nb_pc_records);
    i = 0;
    total = 0;
    for(h = 0; h < PC_REC_HASH_SIZE; h++) {
        for(r = pc_rec_hash[h]; r != NULL; r = r->next) {
            pr[i++] = r;
            total += r->count;
        }
    }
    qsort(pr, nb_pc_records, sizeof(PCRecord *), pc_rec_cmp);

    f = fopen("/tmp/kqemu.stats", "w");
    if (!f) {
        perror("/tmp/kqemu.stats");
        exit(1);
    }
    fprintf(f, "total: %" PRId64 "\n", total);
    sum = 0;
    for(i = 0; i < nb_pc_records; i++) {
        r = pr[i];
        sum += r->count;
        fprintf(f, "%08lx: %" PRId64 " %0.2f%% %0.2f%%\n",
                r->pc,
                r->count,
                (double)r->count / (double)total * 100.0,
                (double)sum / (double)total * 100.0);
    }
    fclose(f);
    free(pr);

    kqemu_record_flush();
}
#endif

static inline void kqemu_load_seg(struct kqemu_segment_cache *ksc,
                                  const SegmentCache *sc)
{
    ksc->selector = sc->selector;
    ksc->flags = sc->flags;
    ksc->limit = sc->limit;
    ksc->base = sc->base;
}

static inline void kqemu_save_seg(SegmentCache *sc,
                                  const struct kqemu_segment_cache *ksc)
{
    sc->selector = ksc->selector;
    sc->flags = ksc->flags;
    sc->limit = ksc->limit;
    sc->base = ksc->base;
}

int kqemu_cpu_exec(CPUState *env)
{
    struct kqemu_cpu_state kcpu_state, *kenv = &kcpu_state;
    int ret, cpl, i;
#ifdef CONFIG_PROFILER
    int64_t ti;
#endif
#ifdef _WIN32
    DWORD temp;
#endif

#ifdef CONFIG_PROFILER
    ti = profile_getclock();
#endif
    LOG_INT("kqemu: cpu_exec: enter\n");
    LOG_INT_STATE(env);
    for(i = 0; i < CPU_NB_REGS; i++)
        kenv->regs[i] = env->regs[i];
    kenv->eip = env->eip;
    kenv->eflags = env->eflags;
    for(i = 0; i < 6; i++)
        kqemu_load_seg(&kenv->segs[i], &env->segs[i]);
    kqemu_load_seg(&kenv->ldt, &env->ldt);
    kqemu_load_seg(&kenv->tr, &env->tr);
    kqemu_load_seg(&kenv->gdt, &env->gdt);
    kqemu_load_seg(&kenv->idt, &env->idt);
    kenv->cr0 = env->cr[0];
    kenv->cr2 = env->cr[2];
    kenv->cr3 = env->cr[3];
    kenv->cr4 = env->cr[4];
    kenv->a20_mask = env->a20_mask;
    kenv->efer = env->efer;
    kenv->tsc_offset = 0;
    kenv->star = env->star;
    kenv->sysenter_cs = env->sysenter_cs;
    kenv->sysenter_esp = env->sysenter_esp;
    kenv->sysenter_eip = env->sysenter_eip;
#ifdef TARGET_X86_64
    kenv->lstar = env->lstar;
    kenv->cstar = env->cstar;
    kenv->fmask = env->fmask;
    kenv->kernelgsbase = env->kernelgsbase;
#endif
    if (env->dr[7] & 0xff) {
        kenv->dr7 = env->dr[7];
        kenv->dr0 = env->dr[0];
        kenv->dr1 = env->dr[1];
        kenv->dr2 = env->dr[2];
        kenv->dr3 = env->dr[3];
    } else {
        kenv->dr7 = 0;
    }
    kenv->dr6 = env->dr[6];
    cpl = (env->hflags & HF_CPL_MASK);
    kenv->cpl = cpl;
    kenv->nb_pages_to_flush = nb_pages_to_flush;
    kenv->user_only = (env->kqemu_enabled == 1);
    kenv->nb_ram_pages_to_update = nb_ram_pages_to_update;
    nb_ram_pages_to_update = 0;
    kenv->nb_modified_ram_pages = nb_modified_ram_pages;

    kqemu_reset_modified_ram_pages();

    if (env->cpuid_features & CPUID_FXSR)
        restore_native_fp_fxrstor(env);
    else
        restore_native_fp_frstor(env);

#ifdef _WIN32
    if (DeviceIoControl(kqemu_fd, KQEMU_EXEC,
                        kenv, sizeof(struct kqemu_cpu_state),
                        kenv, sizeof(struct kqemu_cpu_state),
                        &temp, NULL)) {
        ret = kenv->retval;
    } else {
        ret = -1;
    }
#else
    ioctl(kqemu_fd, KQEMU_EXEC, kenv);
    ret = kenv->retval;
#endif
    if (env->cpuid_features & CPUID_FXSR)
        save_native_fp_fxsave(env);
    else
        save_native_fp_fsave(env);

    for(i = 0; i < CPU_NB_REGS; i++)
        env->regs[i] = kenv->regs[i];
    env->eip = kenv->eip;
    env->eflags = kenv->eflags;
    for(i = 0; i < 6; i++)
        kqemu_save_seg(&env->segs[i], &kenv->segs[i]);
    cpu_x86_set_cpl(env, kenv->cpl);
    kqemu_save_seg(&env->ldt, &kenv->ldt);
    env->cr[0] = kenv->cr0;
    env->cr[4] = kenv->cr4;
    env->cr[3] = kenv->cr3;
    env->cr[2] = kenv->cr2;
    env->dr[6] = kenv->dr6;
#ifdef TARGET_X86_64
    env->kernelgsbase = kenv->kernelgsbase;
#endif

    /* flush pages as indicated by kqemu */
    if (kenv->nb_pages_to_flush >= KQEMU_FLUSH_ALL) {
        tlb_flush(env, 1);
    } else {
        for(i = 0; i < kenv->nb_pages_to_flush; i++) {
            tlb_flush_page(env, pages_to_flush[i]);
        }
    }
    nb_pages_to_flush = 0;

#ifdef CONFIG_PROFILER
    kqemu_time += profile_getclock() - ti;
    kqemu_exec_count++;
#endif

    if (kenv->nb_ram_pages_to_update > 0) {
        cpu_tlb_update_dirty(env);
    }

    if (kenv->nb_modified_ram_pages > 0) {
        for(i = 0; i < kenv->nb_modified_ram_pages; i++) {
            unsigned long addr;
            addr = modified_ram_pages[i];
            tb_invalidate_phys_page_range(addr, addr + TARGET_PAGE_SIZE, 0);
        }
    }

    /* restore the hidden flags */
    {
        unsigned int new_hflags;
#ifdef TARGET_X86_64
        if ((env->hflags & HF_LMA_MASK) &&
            (env->segs[R_CS].flags & DESC_L_MASK)) {
            /* long mode */
            new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
        } else
#endif
        {
            /* legacy / compatibility case */
            new_hflags = (env->segs[R_CS].flags & DESC_B_MASK)
                >> (DESC_B_SHIFT - HF_CS32_SHIFT);
            new_hflags |= (env->segs[R_SS].flags & DESC_B_MASK)
                >> (DESC_B_SHIFT - HF_SS32_SHIFT);
            if (!(env->cr[0] & CR0_PE_MASK) ||
                   (env->eflags & VM_MASK) ||
                   !(env->hflags & HF_CS32_MASK)) {
                /* XXX: try to avoid this test. The problem comes from the
                   fact that is real mode or vm86 mode we only modify the
                   'base' and 'selector' fields of the segment cache to go
                   faster. A solution may be to force addseg to one in
                   translate-i386.c. */
                new_hflags |= HF_ADDSEG_MASK;
            } else {
                new_hflags |= ((env->segs[R_DS].base |
                                env->segs[R_ES].base |
                                env->segs[R_SS].base) != 0) <<
                    HF_ADDSEG_SHIFT;
            }
        }
        env->hflags = (env->hflags &
           ~(HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)) |
            new_hflags;
    }
    /* update FPU flags */
    env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
        ((env->cr[0] << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
    if (env->cr[4] & CR4_OSFXSR_MASK)
        env->hflags |= HF_OSFXSR_MASK;
    else
        env->hflags &= ~HF_OSFXSR_MASK;

    LOG_INT("kqemu: kqemu_cpu_exec: ret=0x%x\n", ret);
    if (ret == KQEMU_RET_SYSCALL) {
        /* syscall instruction */
        return do_syscall(env, kenv);
    } else
    if ((ret & 0xff00) == KQEMU_RET_INT) {
        env->exception_index = ret & 0xff;
        env->error_code = 0;
        env->exception_is_int = 1;
        env->exception_next_eip = kenv->next_eip;
#ifdef CONFIG_PROFILER
        kqemu_ret_int_count++;
#endif
        LOG_INT("kqemu: interrupt v=%02x:\n", env->exception_index);
        LOG_INT_STATE(env);
        return 1;
    } else if ((ret & 0xff00) == KQEMU_RET_EXCEPTION) {
        env->exception_index = ret & 0xff;
        env->error_code = kenv->error_code;
        env->exception_is_int = 0;
        env->exception_next_eip = 0;
#ifdef CONFIG_PROFILER
        kqemu_ret_excp_count++;
#endif
        LOG_INT("kqemu: exception v=%02x e=%04x:\n",
                    env->exception_index, env->error_code);
        LOG_INT_STATE(env);
        return 1;
    } else if (ret == KQEMU_RET_INTR) {
#ifdef CONFIG_PROFILER
        kqemu_ret_intr_count++;
#endif
        LOG_INT_STATE(env);
        return 0;
    } else if (ret == KQEMU_RET_SOFTMMU) {
#ifdef CONFIG_PROFILER
        {
            unsigned long pc = env->eip + env->segs[R_CS].base;
            kqemu_record_pc(pc);
        }
#endif
        LOG_INT_STATE(env);
        return 2;
    } else {
        cpu_dump_state(env, stderr, fprintf, 0);
        fprintf(stderr, "Unsupported return value: 0x%x\n", ret);
        exit(1);
    }
    return 0;
}

void kqemu_cpu_interrupt(CPUState *env)
{
#if defined(_WIN32)
    /* cancelling the I/O request causes KQEMU to finish executing the
       current block and successfully returning. */
    CancelIo(kqemu_fd);
#endif
}

/* 
   QEMU paravirtualization interface. The current interface only
   allows to modify the IF and IOPL flags when running in
   kqemu.

   At this point it is not very satisfactory. I leave it for reference
   as it adds little complexity.
*/

#define QPI_COMM_PAGE_PHYS_ADDR 0xff000000

static uint32_t qpi_mem_readb(void *opaque, target_phys_addr_t addr)
{
    return 0;
}

static uint32_t qpi_mem_readw(void *opaque, target_phys_addr_t addr)
{
    return 0;
}

static void qpi_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}

static void qpi_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}

static uint32_t qpi_mem_readl(void *opaque, target_phys_addr_t addr)
{
    CPUState *env;

    env = cpu_single_env;
    if (!env)
        return 0;
    return env->eflags & (IF_MASK | IOPL_MASK);
}

/* Note: after writing to this address, the guest code must make sure
   it is exiting the current TB. pushf/popf can be used for that
   purpose. */
static void qpi_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
    CPUState *env;

    env = cpu_single_env;
    if (!env)
        return;
    env->eflags = (env->eflags & ~(IF_MASK | IOPL_MASK)) | 
        (val & (IF_MASK | IOPL_MASK));
}

static CPUReadMemoryFunc *qpi_mem_read[3] = {
    qpi_mem_readb,
    qpi_mem_readw,
    qpi_mem_readl,
};

static CPUWriteMemoryFunc *qpi_mem_write[3] = {
    qpi_mem_writeb,
    qpi_mem_writew,
    qpi_mem_writel,
};

static void qpi_init(void)
{
    kqemu_comm_base = 0xff000000 | 1;
    qpi_io_memory = cpu_register_io_memory(0, 
                                           qpi_mem_read, 
                                           qpi_mem_write, NULL);
    cpu_register_physical_memory(kqemu_comm_base & ~0xfff, 
                                 0x1000, qpi_io_memory);
}
#endif